首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30932篇
  免费   3982篇
  国内免费   2851篇
电工技术   2292篇
技术理论   2篇
综合类   4310篇
化学工业   2658篇
金属工艺   2092篇
机械仪表   2042篇
建筑科学   1700篇
矿业工程   813篇
能源动力   468篇
轻工业   1077篇
水利工程   625篇
石油天然气   760篇
武器工业   371篇
无线电   3297篇
一般工业技术   4685篇
冶金工业   974篇
原子能技术   229篇
自动化技术   9370篇
  2024年   54篇
  2023年   386篇
  2022年   680篇
  2021年   906篇
  2020年   938篇
  2019年   961篇
  2018年   881篇
  2017年   1206篇
  2016年   1267篇
  2015年   1475篇
  2014年   2083篇
  2013年   2222篇
  2012年   2296篇
  2011年   2410篇
  2010年   1876篇
  2009年   2102篇
  2008年   1914篇
  2007年   2192篇
  2006年   1886篇
  2005年   1616篇
  2004年   1358篇
  2003年   1111篇
  2002年   910篇
  2001年   822篇
  2000年   690篇
  1999年   567篇
  1998年   465篇
  1997年   386篇
  1996年   340篇
  1995年   345篇
  1994年   284篇
  1993年   238篇
  1992年   179篇
  1991年   146篇
  1990年   130篇
  1989年   95篇
  1988年   73篇
  1987年   49篇
  1986年   31篇
  1985年   29篇
  1984年   21篇
  1983年   23篇
  1982年   16篇
  1981年   12篇
  1980年   9篇
  1979年   7篇
  1978年   7篇
  1977年   8篇
  1976年   7篇
  1963年   6篇
排序方式: 共有10000条查询结果,搜索用时 265 毫秒
11.
In this study, we present a DLP 3D-printing strategy for the fabrication of SiCN ceramic matrix composites (CMCs). The polysilazane-based preceramic polymer containing inert fillers was UV-cured into a green body and then converted to SiCN CMCs after pyrolysis. The introduced fillers (Si3N4 particles and Si3N4 whiskers) as reinforcements are well dispersed in the matrix, which can not only effectively reduce the linear shrinkage and weight loss, but also greatly improve the mechanical properties of the SiCN CMCs. The bending strength of the SiCN CMCs reinforced with 10 wt% Si3N4 whiskers (without surface polished) reached 180.7 ± 15.6 MPa. Furthermore, the effect of fillers content on microstructure and porosity of the SiCN CMCs are discussed, and it was found that the excessive fillers led to increased pore defects and decreased continuity of the matrix, thereby reducing the mechanical properties of the SiCN CMCs. This strategy provides a promising ceramic manufacturing technique to fabricate polymer‐derived CMCs with complex-shaped and high-performance for potential demanding applications.  相似文献   
12.
Excessive cross-linking is a major factor in the resistance to the remodelling of the extracellular matrix (ECM) during fibrotic progression. The role of TGFβ signalling in impairing ECM remodelling has been demonstrated in various fibrotic models. We hypothesised that increased ECM cross-linking by TGFβ contributes to skin fibrosis in Systemic Sclerosis (SSc). Proteomics was used to identify cross-linking enzymes in the ECM of primary human dermal fibroblasts, and to compare their levels following treatment with TGFβ-1. A significant upregulation and enrichment of lysyl-oxidase-like 1, 2 and 4 and transglutaminase 2 were found. Western blotting confirmed the upregulation of lysyl hydroxylase 2 in the ECM. Increased transglutaminase activity in TGFβ-1 treated ECM was revealed from a cell-based assay. We employed a mass spectrometry-based method to identify alterations in the ECM cross-linking pattern caused by TGFβ-1. Cross-linking sites were identified in collagens I and V, fibrinogen and fibronectin. One cross-linking site in fibrinogen alpha was found only in TGFβ-treated samples. In conclusion, we have mapped novel cross-links between ECM proteins and demonstrated that activation of TGFβ signalling in cultured dermal fibroblasts upregulates multiple cross-linking enzymes in the ECM.  相似文献   
13.
SiC/SiC ceramic matrix composites (CMCs) are being developed for use in aero-engines to replace nickel superalloy components. Sub-element testing acts as the key stepping stone in bridging understanding derived from basic coupon testing and more complex component testing. This study presents the development of high temperature C-shape sub-element testing with the use of digital image correlation to study damage progression. The specimen is designed with a bias towards a mixed mode-stress state more similar to what a CMC component may see in service. Both monotonic and fatigue tests were completed on C specimens and compared with predicted behaviour from modelling. Test data from both test types suggested that specimens were failing once they reached a critical radial stress level. However evidence from fractography of specimens showed that in both monotonic and fatigue tests radial cracks (driven by hoop stresses) are initiating prior to circumferential cracks.  相似文献   
14.
It is known that optical flow estimation techniques suffer from the issues of ill-defined edges and boundaries of the moving objects. Traditional variational methods for optical flow estimation are not robust to handle these issues since the local filters in these methods do not hold the robustness near the edges. In this paper, we propose a non-local total variation NLTV-L1 optical flow estimation method based on robust weighted guided filtering. Specifically, first, the robust weighted guided filtering objective function is proposed to preserve motion edges. The proposed objective function is based on the linear model which is computationally efficient and edge-preserving in complex natural scenarios. Second, the proposed weighted guided filtering objective function is incorporated into the non-local total variation NLTV-L1 energy function. Finally, the novel NLTV-L1 optical flow method is performed using the coarse-to-fine process. Additionally, we modify some state-of-the-art variational optical flow estimation methods by the robust weighted guided filtering objective function to verify the performance on Middlebury, MPI-Sintel, and Foggy Zurich sequences. Experimental results show that the proposed method can preserve edges and improve the accuracy of optical flow estimation compared with several state-of-the-art methods.  相似文献   
15.
In this study, AA7075 aluminum matrix composites reinforced with the combination of SiC, Al2O3, and B4C particles were fabricated by the liquid metal infiltration method. The effects of the relative ratio of B4C and Al2O3 particles on the microstructural, wear, and corrosion features of the composite samples were analyzed using XRD, light metal microscopy, SEM, EDS, Brinell hardness, ball-on-disc type tribometer, and potentiodynamic polarization devices. It was determined that infiltration occurred more successfully, and homogenously distributed particles with reduced porosity were obtained as the amount of Al2O3 increased. Worn surface studies revealed that the specimens were predominantly worn by abrasion and adhesion. The increase in B4C/Al2O3 ratio caused a decrease in the hardness and wear strength, whereas it increased the corrosion resistance.  相似文献   
16.
Carbon fiber reinforced ceramic owns the properties of lightweight, high fracture toughness, excellent shock resistance, and thus overcomes ceramic's brittleness. The researches on the advanced structure of astronautics, marine have exclusively evaluated the quasi-static mechanical response of carbon fiber reinforced ceramics, while few investigations are available in the open literature regarding elastodynamics. This paper reports the dynamic compressive responses of a carbon fiber reinforced silicon carbide (Cf/SiC) composite (CFCMC) tested by the material test system 801 machine (MTS) and the split Hopkinson pressure bar (SHPB). These tests were to determine the rate dependent compression response and high strain rate failure mechanism of the Cf/SiC composite in in-plane and out-plane directions. The in-plane compressive strain rates are from 0.001 to 2200?s?1, and that of the out-plane direction are from 0.001 to 2400?s?1. The compressive stress-strain curves show the Cf/SiC composite has a property of strain rate sensitivity in both directions while under high strain rate loadings. Its compressive stiffness, compressive stress, and corresponding strain are also strain rate sensitive. The compressive damage morphologies after high strain rate impacting show different failure modes for each loading direction. This study provides knowledge about elastodynamics of fiber-reinforced ceramics and extends their design criterion with a reliable evaluation while applying in the scenario of loading high strain rate.  相似文献   
17.
In theory, the combination of inorganic materials and polymers may provide a synergistic performance for mixed‐matrix membranes (MMMs); however, the filler dispersion into the MMMs is a crucial technical parameter for obtaining compelling MMMs. The effect of the filler distribution on the gas separation performance of the MMMs based on Matrimid®‐PEG 200 and ZIF‐8 nanoparticles is demonstrated. The MMMs were prepared by two different membrane preparation procedures, namely, the traditional method and non‐dried metal‐organic framework (MOF) method. In CO2/CH4 binary mixtures, the MMMs were tested under fixed conditions and characterized by various methods. Finally, regardless of the MMM preparation procedure, the incorporation of 30 wt % ZIF‐8 nanoparticles allowed to increase the CO2 permeability in MMMs. The ZIF‐8 dispersion influenced significantly the separation factor.  相似文献   
18.
宫明明 《中国酿造》2021,40(12):175
该研究建立了一种亲水交互作用色谱-串联质谱(HILIC-MS/MS)法测定动物源运动食品中潮霉素B、新霉素、安普霉素3种氨基糖苷类抗生素残留量的方法。结果表明,样品经Sielc Obelisc R柱分离,采用0.1%甲酸水溶液-乙腈梯度洗脱,可以实现3种目标物组分的分离。在此条件下,3种氨基糖苷类抗生素在5~500 ng/mL的质量浓度范围内线性关系良好,相关系数R2为0.999 5~0.999 9,检出限均为15 μg/kg,定量限均为50 μg/kg,保留时间的日间和日内相对标准偏差(RSD)分别为3.5%~7.9%和3.5%~4.1%,峰面积的日间和日内RSD分别为3.6%~7.4%和3.2%~3.9%,加标回收率为85.7%~93.6%,回收率试验结果的RSD为3.1%~5.2%。该方法可以满足动物源运动食品中3种氨基糖苷类抗生素的检测需求。  相似文献   
19.
《Ceramics International》2022,48(10):13927-13937
Long-term thermal cycling causes irreversible dimensional changes of the material, which in turn affects the reliability of precision instruments. In this paper, dimensional stability mechanisms of SiC/Al composites during thermal cycling were revealed using high-precision thermal dilatometer, XRD and spherical aberration correction transmission electron microscope (Cs-TEM). First, how the factors including dislocations, internal stress and precipitates affect the dimensional change of SiC/Al composites were separately introduced. Then, the integrated effect of these factors affecting the dimensional stability of SiC/Al composites was further discussed. Among them, the integrated effect of dislocation-internal stress in SiC/pure Al composites leads to an increase in dislocation density and average lattice constant, which leads to an increase in dimensional change. The integrated effect of dislocation-internal stress-precipitates in SiC/2024Al composites leads to a decrease in the average lattice constant and some changes in the precipitation behavior (including the type, density and lattice constant of the precipitates), which ultimately leads to a decrease in dimensional change. The dimensional change of the two types of composites was semi-quantitatively estimated. Finally, the reasons for the significantly higher dimensional stability of the SiC/2024Al composites were given.  相似文献   
20.
Ceramic matrix composites (CMC) are highly required in many fields of science and engineering. However, the CMC parts always have poor surface finish. This study attempts to improve cutting performance of CMC material by combing the advantages of ultrasonic assisted cutting and diamond wire sawing. Cutting force, surface roughness, machined edge and tool wear are analyzed based on experimental results. It shows that the oscillatory movement of tool edges provides positive effect on particle ejection and residual material reduction. Ductile chip formation can be achieved due to the small tip radius of grits. Obvious decrease in cutting force, surface roughness and tool wear are obtained. Moreover, burrs, fuzzing and fracture are reduced. Meanwhile, both the surface characteristics and shape accuracy are significantly improved. These results provide a valuable basis for application of ultrasonic assisted wire sawing and understanding of CMC cutting mechanisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号